fasterbench
Overview
fasterbench
is a comprehensive benchmarking library for PyTorch models that helps AI researchers and engineers evaluate model performance across five critical dimensions:
- Size: Model disk size and parameter count
- Speed: Latency and throughput on both GPU and CPU
- Compute: MACs (multiply-accumulate operations)
- Memory: Peak and average memory consumption
- Energy: Power consumption and carbon emissions
Whether you’re optimizing for edge deployment, comparing model architectures, or researching model efficiency, FasterBench provides the metrics you need with minimal setup.
Installation
pip install fasterbench
Quick Start
import torch
from torchvision.models import resnet18
from fasterbench import benchmark
# Load your model
= resnet18()
model
# Create sample input
= torch.randn(1, 3, 224, 224)
dummy_input
# Run comprehensive benchmarks
= benchmark(model, dummy_input)
results
# Print results
for metric, value in results.items():
print(f"{metric}: {value}")
Features
All-in-one Benchmarking
Get comprehensive metrics with a single function call:
# Measure all metrics
= benchmark(model, dummy_input)
results
# Or select specific metrics
= benchmark(model, dummy_input, metrics=["size", "speed"]) results
Size Metrics
Evaluate model size characteristics:
from fasterbench import compute_size
= compute_size(model)
size_metrics print(f"Disk Size: {size_metrics.size_mib:.2f} MiB")
print(f"Parameters: {size_metrics.num_params:,}")
Speed Metrics
Measure inference performance across devices:
from fasterbench import compute_speed_multi
= compute_speed_multi(model, dummy_input)
speed_metrics for device, metrics in speed_metrics.items():
print(f"{device} latency (P50): {metrics.p50_ms:.2f} ms")
print(f"{device} throughput: {metrics.throughput_s:.2f} inferences/sec")
Compute Metrics
Quantify computational complexity:
from fasterbench import compute_compute
= compute_compute(model, dummy_input)
compute_metrics print(f"MACs: {compute_metrics.macs_m} million")
Memory Metrics
Profile memory usage:
from fasterbench import compute_memory_multi
= compute_memory_multi(model, dummy_input)
memory_metrics for device, metrics in memory_metrics.items():
print(f"{device} peak memory: {metrics.peak_mib:.2f} MiB")
Energy Metrics
Measure environmental impact:
from fasterbench import compute_energy_multi
# Requires codecarbon package
= compute_energy_multi(model, dummy_input)
energy_metrics for device, metrics in energy_metrics.items():
print(f"{device} power usage: {metrics.mean_watts:.2f} W")
print(f"{device} CO2: {metrics.co2_eq_g:.6f} g CO₂-eq per inference")
Thread Count Optimization
Find the optimal number of CPU threads:
from fasterbench import sweep_threads
= sweep_threads(model, dummy_input, thread_counts=[1, 2, 4, 8, 16])
thread_results for result in thread_results:
print(f"Threads: {result['threads']}, Latency: {result['mean_ms']:.2f} ms")
Visualize Results
Create radar plots to compare multiple models:
from fasterbench.benchmark import benchmark
from fasterbench.plot import *
from torchvision.models import resnet18, mobilenet_v3_large
import torch
= torch.randn(8,3,224,224)
dummy
= benchmark(resnet18(), dummy,
resnet =("size","speed","compute","energy"))
metrics= benchmark(mobilenet_v3_large(), dummy,
mobilenet=("size","speed","compute","energy")) metrics
= create_radar_plot([resnet, mobilenet],
fig =["ResNet-18", "MobileNet-V3"])
model_names fig.show()
Documentation
For more detailed usage examples and API documentation, visit our documentation.
Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
License
This project is licensed under the Apache 2.0 License - see the LICENSE file for details.